

Journal of Fluorine Chemistry 71 (1995) 207

Oxidative fluorination of sulfur(IV) compounds by XeF₂

Alexander F. Janzen *, Xiaobo Ou

Department of Chemistry, University of Manitoba, Winnipeg, Man. R3T 2N2, Canada

Keywords: Oxidative fluorination; Sulfur(IV) compounds; Xenon difluoride; NMR spectroscopy; Ab initio calculations

The oxidative fluorination of sulfur(IV) compounds such as diphenyl sulfoxide or diphenylsulfur difluoride occurs under mild conditions in the presence of xenon difluoride and catalytic amounts of chloride ion (~ 1 mol%). In the case of Ph₂SO, the sulfur(VI) product Ph₂S(O)F₂ is formed in essentially quantitative yield within a few minutes at 25 °C.

$$Ph_2SO + XeF_2 \xrightarrow{Et4NCl \ (1 \ mol\%)} Ph_2S(O)F_2 + Xe$$

Chloride ion reacts with XeF₂ to produce fluoride ion, and a mechanism of oxidative fluorination is proposed which involves fluorosulfur(IV) anions and fluorosulfur(V) radicals.

$$\begin{array}{ccc} Ph_2SO + F^- & \Longrightarrow & Ph_2S(O)F^- \\ Ph_2S(O)F^- & \Longrightarrow & Ph_2S(O)F \cdot \\ Ph_2S(O)F \cdot + XeF_2 & \Longrightarrow & Ph_2S(O)F_2 + FXe \cdot \\ Ph_2SO + FXe \cdot & \Longrightarrow & Ph_2S(O)F \cdot + Xe \end{array}$$

In the presence of Lewis acids such as BF₃, fluorosulfur(VI) cations are formed, i.e. Ph₂S(O)F⁺ [1], and these cations undergo rapid intermolecular fluorine exchange with Ph₂S(O)F₂, presumably via fluorine-bridged intermediates [2].

$$Ph_2S(O)F_2 + BF_3 \longrightarrow Ph_2S(O)F^+ BF_4^-$$

 $Ph_2S(O)F_2 + Ph_2S(O)F^+ \Longrightarrow$

$$Ph_2F(O)S--F--S(O)FPh_2^+$$

This equilibrium has been studied by dynamic ¹⁹F and ¹³C NMR spectroscopy. Rapid halogen exchange is also observed when chloride ion is added to cationic Ph₂S(O)F⁺, but an excess of chloride ion slows down exchange as Ph₂S(O)F₂ and Ph₂S(O)Cl₂ are produced, as confirmed by ¹³C NMR.

In the above synthetic and fluorine-exchange studies, the ¹³C NMR spectrum of Ph₂S(O)F₂ was used to monitor the purity of reagents and solvent. A trace of moisture immediately produces Ph₂SO₂, while contact with glass apparatus converts the C(1) triplet into a broadened single peak, presumably because reaction with glass liberates the Lewis acids BF₃ and SiF₄, which in turn produce the cation Ph₂S(O)F⁺. Ab initio MO calculations (3-21G*) were carried out of the proposed anionic, radical and cationic intermediates.

References

- [1] I. Ruppert, Chem. Ber., 113 (1980) 1047.
- [2] A.F. Janzen, Coord. Chem. Rev., 130 (1994) 355.

^{*} Corresponding author.